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Abstract

This paper argues that the network latency due to synchronous
replication is no longer tolerable in scenarios where businesses
are required by regulation to separate their secondary sites from
the primary by hundreds of miles. We propose a semantic-aware
remote replication system to meet the contrasting needs of both sys-
tem efficiency and safe remote replication with tight recovery-point
and recovery-time objectives. Using experiments conducted on a
commercial replication system and on a Linux file system we show
that (i) unlike synchronous replication, asynchronous replication is
relatively insensitive to network latency, and (ii) applications such
as databases already intelligently deal with the weak persistency
semantics offered by modern file systems. Our proposed system
attempts to use asynchronous replication whenever possible and
uses application/file-system “signals” to maintain synchrony be-
tween the primary and secondary sites. We present a high-level
design of our system and discuss several potential challenges that
need to be addressed in such a system.

1 Introduction

In recent years there has been increased awareness of
the need for business continuity in the face of disasters [9].
Of particular importance is the protection and availability
of business data in such circumstances. The need for data
availability is typically addressed by replicating business
data on a local/primary storage system, to some remote lo-
cation from where it can be accessed in case of a disaster.

From a business/usability point of view, such remote
replication is driven by two metrics [3]. First is therecovery-
point-objectivewhich is the consistent data point to which
data can be restored after a disaster. Second is therecovery-
time-objectivewhich is the time it takes to recover to that
consistent data point after a disaster.

Remote replication can be broadly classified into the fol-
lowing two categories:

• Synchronous replication: every data block written to a
local storage system is replicated to the remote location
before the local write operation returns.

• Asynchronous replication: in this case the local and
remote storage systems are allowed to diverge. The
amount of divergence between the local and remote
systems is typically bounded by either a certain amount
of data, or by a certain amount of time.

For the remote replication metrics mentioned above,
synchronous replication would therefore appear to be the
ideal replication mechanism on both counts. First, from
a recovery-point-objective, for synchronous replication, the
local and remote storage systems are in lock step and there-
fore data committed to disk is guaranteed to be available
at the remote system. Similarly, from a recovery-time-
objective, since the local and remote systems are in sync, no
time consuming procedures are required to bring the remote
system to a consistent state in the event of a local failure.

For these reasons, synchronous replication is normally
recommended for applications, such as financial databases,
where consistency between local and remote storage sys-
tems is a high priority. However, these desirable proper-
ties come at a price. First, because every data block needs
to be replicated remotely, synchronous replication systems
can not benefit from any local write coalescing of data if
the same data blocks are written repeatedly [6]. Second,
because data have to be copied to the remote location be-
fore the write operation returns, synchronous replication
has a direct performance impact on the local system, since
both lower throughput and increased latency of the path be-
tween the primary and the remote systems are reflected in
the time it takes for the local disk write to complete. This
requires that network resources be engineered to have suffi-
cient throughput to accommodate the peak, bursty load.

Because the local and remote systems are allowed to di-
verge, asynchronous replication always involves some data
loss in the event of a failure of the primary system. On
the other hand, since write operations can be batched and
pipelined, an asynchronous replication system can more
smoothly and fully utilize the available network capacity
between local and remote sites, regardless of the latency be-
tween sites. As such, in terms of the rate of data transfer,
asynchronous replication systems move data in a much more
efficient manner than synchronous replication systems.

The performance penalty due to network latency in syn-
chronous replication is usually tolerable when the secondary
site is separated from the primary by only a few miles or
tens of miles. However, to ensure that large disasters do
not have catastrophic business consequences, many critical
businesses today are required by regulations to maintain a
secondary site that is separated from the primary by a few
hundred miles. The increased network latency due to this
larger geographic separation can have a drastic performance
(latency) impact on applications, and it is no longer clear



whether the higher penalty of synchronous replication is tol-
erable even for stringent business continuity needs. The goal
of our work then is to investigate whether a replication sys-
tem can be developed that (i) embodies the desirable prop-
erties of both synchronous and asynchronous approaches,
while removing (or at least mitigating) the undesirable prop-
erties of each and (ii) is particularly suitable for replication
over large distances.

We observe that most current replication mechanisms
primarily operate at the disk block level. That means that
the replication process is completely oblivious to the appli-
cation and indeed to the file system operating on it. This is
attractive for the replication mechanism; “all” it has to do
is to faithfully replicate each block of data that is handed to
it. This means that such replication works with any applica-
tion, any file system and any operating system. The down-
side though of such a simple system is that every block of
data is treated with the same importance, regardless of the
importance and/or urgency applied to it by the application
and/or file system.

The key insight of our approach is that, from an ap-
plication/file system perspective, all writes arenot treated
equally. For performance reasons modern file systems typi-
cally do not commit each write request to disk [7]. Rather,
writes normally go into a write buffer in memory where it
can spend a significant amount of time (15-30 seconds on
Unix-like file systems and even longer on others) before
being written out to disk. The consistency/protection se-
mantics offered by such a file system are clearly undesir-
able for many applications (e.g., databases) where there is a
need to store data persistently to deal with crashes. Appli-
cations deal with this by explicitly forcing data to disk when
needed. For example this can be done by opening a file in
synchronous mode (not to be confused with synchronous
replication), or by indicating to the file system through sys-
tem calls (e.g., fsync/fflush) that data should written to disk.

The question addressed in this work is whether the im-
portance that the application or file system attach to a write
(indicated by the “signals” described above), can be used to
inform the replication system regarding the importance of
a write and whether it should be replicated synchronously
or not. We call thissemantic-aware remote replication.
In particular, our approach attempts to make use of asyn-
chronous replication, unless the application/file system “sig-
nals” the need for synchronous semantics. In the latter case,
the replication of the data is performed with synchronous
semantics. Although one can envisage applications being
modified to specifically make use of this system, our initial
work indicates that this does not appear to be necessary—
we expect the file system to be able to infer the application
semantics through existing mechanisms.

The outline of the remainder of the paper is as follows.
In Section 2, we put our work into perspective by consid-
ering related work. Our approach involves the replication
system providing a semantic aware interface to the file sys-

tem, which in turn deduce the relative importance of data
writes from application behavior. Understanding the inter-
action between application, file system and storage system
and remote replication is therefore crucial to our approach.
In Section 3, we consider the interactions of these different
components in detail. Finally, in Section 4 we outline the
essence of our approach and consider some of the potential
problem areas that need to be addressed in a detailed design.

2 Related work
Seneca [4] uses write records combined with the notion

of barriers in order to coalesce writes and reduce network
throughput. The protocol records each write into the pri-
mary log, while periodically inserting send barriers into
it. Any blocks written after the last send barrier can be
overwritten, eliminating the need for their retransmission.
Write-ordering is ensured by receive barriers, which guar-
antee that any blocks written between the old block and the
end of the log will be considered one atomic unit, and will be
written to disk as such. The Ursa Minor system argues that
no single fault model is optimal for all applications and pro-
posed supporting data-type specific selections of fault mod-
els and encoding schemes [1].

The Veritas Volume Replicator uses a log and employs
transactions to perform asynchronous replication. It first
logs writes into a Storage Replicator Log (SRL), then writes
the data to the primary volume, and finally transmits it to
the secondary volume. A write is reported as complete to
the file system as soon as it is logged into the SRL, but it is
only marked as complete in the SRL itself once an acknowl-
edgment has been received that the data has been written
to the secondary volume [8]. Hence the system guarantees
a consistent state, since the log is always aware of which
writes have been replicated successfully. In contrast, when
operating in synchronous mode, the Veritas Volume Repli-
cator waits until it has received an acknowledgment that the
data has been received (although not yet written to disk) at
the secondary before reporting the write as complete to the
file system. In this case extra reliability is earned at the cost
of speed, since the file system must wait for data to propa-
gate over the network and acknowledged each time a write
is performed.

Network Appliance SnapMirror uses a technique known
as snapshotting to keep the secondary volume up to date.
Using the WAFL filesystem, which supports snapshot op-
erations, the system takes an initial snapshot–essentially a
read-only copy–of the primary volume and uses it to ini-
tialize the secondary volume. After some time elapses or a
threshold is reached, a new snapshot is taken and the differ-
ences between the previous and the new snapshot are trans-
ferred to the secondary volume [2].

There exist numerous other commercial products that
perform replication, such as IBM Extended Remote Copy,
HP Continuous Access XP, and EMC RepliStor. EMC prod-



Figure 1: Remote Replication
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Figure 2: Synchronous replication: FCIP throughput for dif-
ferent delay values

ucts, in particular, are based on the Symmetrix Remote Data
Facility (SRDF), a family of solutions which include syn-
chronous and asynchronous replication protocols. An ex-
cellent description of these and others, as well as a detailed
taxonomy of the different approaches for replication can be
found in [4].

3 Remote Replication
In this section we consider the components involved with

remote replication, end-to-end. In Figure 1, we show a
generic remote replication system. At the primary site, data
written by an application passes through the file system be-
fore it is handed over to a volume manager to write the data
to disk. In a remote replication system, the volume manager
will also be responsible for replicating the data via the wide
area network to a remote system, where a reciprocal volume
manager will take part in the remote replication protocol and
write the data to disk at the remote site. We investigate the
interaction between these different components by first con-
sidering the remote replication of a commercial replication
system in Section 3.1. Then in Section 3.2 we look in de-
tail at the functioning of the default Linux ext3 file system
and in particular the interaction of a database with this file
system.

3.1 Remote Replication on IP networks

In this section we present results from a case study in-
volving remote replication over IP networks using a com-

mercial storage system with remote replication capabilities.
For this case study, the storage arrays were interconnected
over a testbed consisting of a Gigabit Ethernet IP network
using storage switches implementing the Fibre Channel over
IP (FCIP) [5] protocol. Our IP testbed was equipped with
a commercial network emulator which allowed us to intro-
duce various network anomalies (in particular delay) in a
controlled fashion for our experiments.

To understand the difficulties of having strict syn-
chronous replication, especially when the secondary (repli-
cation) site is a long distance away from the primary site,
it is useful to examine the fundamental limitations imposed
by the system and protocols. For this purpose, we examined
the performance of our test system using both synchronous
and asynchronous replication while varying the delay intro-
duced by the network emulator in our testbed.

We first consider the case where the storage systems were
configured to perform synchronous replication. Figure 2
shows the instantaneous network throughput (averaged over
1 second intervals) achieved by the system for three differ-
ent delay settings. The plots show the activity for the initial
remote replication phase where the local and remote disks
are being synchronized. (I.e., the amount of data transfered
in each of the three runs are the same.) The impact of even
this modest increase in delay, when performing the replica-
tion synchronously, is evident from the significant decrease
in the throughput achieved. Further, even in the case where
no delay was introduced, the throughput achieved is signif-
icantly lower than the 1 Gbps available in the testbed net-
work.

The second example we show is where the systems were
configured to perform a type of asynchronous replication,
namely, the replication of ”point-in-time” copies. The re-
mote replication application uses the functionality in the
storage array to perform coherent, recurrent, background
copy of data by maintaining several copies of the data that
represent a consistent snapshot of the data volume. An old
version of the data on the remote system is not deleted be-
fore a new copy has been replicated to the remote site in its
entirety. Once all the volumes are synchronized for the first
time, only incremental transfers are typically performed so
that only data that has changed since the previous transfer is
copied across the network link.

When the distances between the local and remote sites
are several hundred to a few thousand miles, the latency
implies that a large amount of data can be in flight at any
instant between the source and destination. Because the lo-
cal and remote copies are allowed to diverge, asynchronous
replication can effectively fill this pipeline with data before
an acknowledgment is needed from the remote end and is
therefore much less sensitive to the increase in delay.

Figure 3 shows the throughput achievable for asyn-
chronous replication for different values of delay in our
testbed. Notice that the achieved throughput is quite close to
the 1 Gbps link capacity in all cases, with appropriate tuning
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Figure 3: Asynchronous replication: FCIP throughput with
different delay values and FCIP switch parameters settings.

of TCP and Fibre Channel switch and protocol parameters.
This remains true, even if the round trip delay is increased
to 80 ms, which is equivalent to a round trip delay across
the continental US. Thus, asynchronous replication can be
made relatively insensitive to distance, which is clearly very
attractive.

3.2 Behavior of Applications on a File System

To better understand how applications interact with the
underlying file system and the disk, we conducted two sets
of experiments. We ran a synthetic application that issued
writes to a journalled Linux file system and observed how
the file system handled these writes at the kernel level. Next,
we ran the Postgresql database on the journalled file sys-
tem and observed how it issued writes to the file system
upon each database transaction. We used Linux’ssystem-
tap kernel-profiling tool to obtain a detailed trace of kernel
events, including application-issued system call, execution
of kernel daemons, and writes to the disk driver.

All experiments were carried out using Linux 2.6.9,
with ext3 as the underlying filesystem and using Post-
gresql 7.4.13. We experimented with various file system
journalling options but only report the results on the default
option (journal = ordered). Note thatno replication was
performed in this setup.

3.2.1 Filesystem Write Handling

Like any flavor of Unix, Linux allows each file to be opened
either in the synchronous or asynchronous mode by specify-
ing the appropriateO SYNCor O ASYNCflag in theopen
system call. This determines how writes will be handled by
the filesystem.

Any application-level write can trigger three types of
writes at the kernel level:

1. Journal writes, which may include logging of meta-
data, data, or both, depending on the journal configura-
tion. The default is to only log metadata.

2. Data writes, which write the file data blocks to disk.

3. Metadata writes, which write the file metadata to disk.

Like most operating systems, Linux employs a kernel-
level file system buffer cache to optimize performance.
The OS employs two daemons—kjournald and
pdflush —that flush dirty blocks to the disk in the back-
ground. kjournald is responsible for writing journal
blocks to disk, whilepdflush is responsible for flush-
ing dirty data and metadata buffer blocks to disk. To en-
sure atomicity, all writes to the journal are implemented as
transactions; kjournald executes all scheduled transactions
periodically— the default period is 5 seconds.

In the first experiment, we opened a file in the syn-
chronous mode and traced the sequence of kernel events
triggered by a write system call. We then repeated the exper-
iment by opening the file in asynchronous mode. Finally, we
opened the file in asynchronous mode and observed kernel
behavior due to a write followed by an fsync (which flushes
the data to disk). Figure 4 illustrates the observed sequence
of events in these three experiments. We discuss the salient
features of these sequences below:

Synchronous write:As expected, writes in synchronous
modes are blocking – the write system call returns only
when all data and the journal metadata have been written
to disk. In particular, the write call causes the file system to
schedule a journal transaction. The file system then writes
the data dirtied by the write call to disk. The journal transac-
tion is executed next by kjournald, which flushes the journal
to disk (thereby logging the metadata to the disk). kjournald
then writes out a commit block indicating the end of the
journal transaction. At this point, the write call, which was
blocked, returns back to the application, signaling the end
of the write. At some later instant, pdflush writes out the
dirty meta-data to disk (since the journal already includes
this information, there is no need to write out the metadata
synchronously; asynchronous metadata writes improve per-
formance).

Asynchronous write:As expected, asynchronous writes are
non-blocking. An asynchronous write only schedules a jour-
nal transaction and then returns back to the application. At
a later instant that is determined by the kjournald commit
interval, kjournald actually executes this transactions and
writes out the dirty data block as well as the journal block
and the commit block. The file meta data is written out by
pdflush at a later time.

Asynchronous write followed by fsync:In this case, the
write system call returns immediately after scheduling a
journal transaction. The fsync, however, is a blocking call
that causes all dirty journal and data blocks to be flushed
to disk. Linux supports three flavors ofsync : fsync ,
which flushes all dirty data and metadata of a file to disk,
fdatasync , which flushes all dirty data but not metadata,
andsync which flushes all dirty data systemwide.
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Figure 5: Event sequence for a SQL query in Postgresql.

3.2.2 Behavior of a Database

A typical database can be configured to run on raw disk par-
titions or over a file system. In the former case, the database
is responsible for buffer and storage management—it imple-
ments its own buffer cache in application space and writes
out dirty data when needed to the raw partition. The ad-
vantage of this approach is that it prevents double buffering
within the operating system. However, for reasons of con-
venience, databases also support standard file systems. To
understand how this is done, we examinedPostgresql—an
open-source object-relational database. When configured to
run over standard file system, Postgresql maintains several
files: (1) a write-ahead log (WAL) file, that logs changes to
data files (database tables), (2) data files, that hold tables and
indices, (3) a commit log file, that contains the commit sta-
tus of transactions, and (4) a checkpoint log file, that holds
the location of recent checkpoints.

By default, Postgresql opens all files inasynchronous
mode for writing, although it is also possible to configure the
database to use synchronous writes. To understand how the
database operates on files, we ran an SQL query, wrapped

around a database transaction, to insert a few rows into a
table. Figure 5 depicts the sequence of events that are trig-
gered by the SQL query. We observe that the query causes
the update to be logged to the WAL buffers in user space.
When the transaction commits, a write system call is issued
to the file system, followed by an fsync which flushes dirty
WAL blocks out to disk. The transaction returns only af-
ter the flush completes. The data written by the SQL query
are held in shared memory in user-space and are written out
asynchronously at a later time (either when the buffer fills up
or if checkpoint is called). Whenever a databasecheckpoint
is invoked by the user (or automatically by the system every
so often), a write is issued to the commit log file, and all
data in the shared memory buffers are written out, followed
by async to flush these writes to disk. Once the sync com-
pletes, a checkpoint record is written out the WAL, followed
by a write to the checkpoint log file; both writes are flushed
usingfsync . Thus, the database does not violate correct-
ness (i.e., maintains ACID properties) even thoughall writes
are in asynchronous mode.This is ensured by intelligently
issuing sync or fsync calls to flush the OS-buffered writes
out to disk—the use of asynchronous writes improves per-
formance without violating safety.

4 Semantic Aware Remote Replication

In the previous section we have shown that applications
that care about the persistency of written data, intelligently
use existing file system mechanisms to ensure that data is
written to disk when needed. We have also shown that asyn-
chronous replication is likely to be more efficient than syn-
chronous replication in terms of moving data from a primary
to a backup site.

Combining these observations, the essence of our ap-
proach to remote replication is to perform replication asyn-
chronously by default, and to automatically switch to syn-
chronous replication semantics only when prompted to do
so by the application. Note that switching between asyn-
chronous and synchronous replication in our system is not



on a system wide basis, but on-demand based on a per appli-
cation/file basis. With synchronous semantics the relevant
data will be guaranteed to have been replicated to the re-
mote system when the system call returns. Specifically our
system operates as follows:

For files opened in synchronous mode (i.e., usingO SYNC),
our system performs synchronous remote replication.

For files opened in asynchronous mode (i.e., using
O ASYNC), our system performs asynchronous replication,
unless the application issues one of the following calls:

• fsync : All dirty data and meta data of the opened file
that reside in the filesystem or the volume manager are
replicated to the remote site.

• fdatasync : Dirty data associated with the opened
file in either the file system or the volume manager is
replicated to the remote site.

• sync : All dirty data in the file system or the volume
manager is replicated to the remote site.

Thus, the replication system needs to besync-aware—a
sync from the application causes file system buffers to be
flushed to volume manager, and requires a sync to be issued
to the volume manager to flush all asynchronously queued
up writes to the remote site. As a result, when the sync
call returns, not only are all dirty blocks written out to the
local disk, they are also guaranteed to have been flushed to
the remote site. While a complete system design is clearly
beyond the scope of this paper, there are several issues that
will need to be considered.

While a system-wide sync call is easy to implement
within the replication system (by simply flushing all queued
up data), the implementation of fsync and fdatasync are
more interesting. It requires the replication system to be
aware of the block to file mapping or befile-aware, so that a
fsync or fdatasync only flushes those queued up blocks that
belong to this file.

Write ordering has important implications on consis-
tency. For example, consider the same file that is opened in
synchronous mode by one application and in asynchronous
mode by another. If an asynchronous write is issued first,
followed by a synchronous write to the same block, then
the latter write may be sent out first and get overwritten by
the older write, resulting in an inconsistency. The replica-
tion system needs to perform write coalescing at the volume
manager level to avoid such inconsistencies. The implica-
tions of out-of-order writes also merits careful attention [4].

Finally, the system can be madenetwork-awareto better
utilize the available network capacity. Buffering of writes
enables the system to smooth out the load on the network.
A further optimization may be to enable the system to in-
form the filesystem so as to opportunistically use network
capacity by flushing its dirty buffers. Such optimizations
can reduce overall network bandwidth needs for replication.

The advantages obtained through write coalescing and ju-
dicious use of network resources will need to be carefully
considered.

5 Conclusion
We have proposed a Semantic Aware Remote Replica-

tion system to meet the contrasting needs of both system
efficiency and safe remote replication with tight recovery-
point and recovery-time objectives. Our system exploits
the fact that applications already intelligently deal with the
weak persistency semantics offered by modern file systems.
In this paper we have motivated our approach and presented
a high level design of how such a system would be realized.
Our future work is in evaluating the potential benefit of our
approach for various real-world workloads. Further, while
we mentioned some of the potential pitfalls, the detailed sys-
tem design and implementation is work in progress.
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